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The sensitivity of a diffusive energy balance model that contains a simple ice sheet is compared with 
that of a model with snow cover only. The effect of the elevated ice sheet surface on the radiative 
cooling is calculated by using a radiative transfer model. Because the temperature in the atmosphere 
decreases with height, the main effect of the ice sheet elevation is to reduce the outgoing infrared 
radiation. This reduction in the radiative cooling decreases the sensitivity of the ice sheet size to 
changes in the solar constant by partially counteracting the albedo feedback. For a reasonable choice 
of parameters, this effect can reduce the strength of the albedo feedback by a factor of 2. 

1. INTRODUCTION 

Zonally averaged energy balance models have received 
much attention since they were introduced by Budyko [ 1969] 
and Sellers [1969]. One reason is that the extent of perma- 
nent snow cover in their models is very sensitive to changes 
in insolation. Budyko and Sellers both found that a reduction 
in the solar constant of only --•2% was sufficient to cause a 
completely ice covered earth. This large response for a small 
change in solar constant is caused by albedo feedback, 
which operates in the following way. If the solar constant is 
reduced slightly, the result is a small cooling and an increase 
in the amount of snow cover. The snow, with its higher 
albedo, reflects more sunlight, leading to further cooling and 
a further increase in snow cover, thus amplifying the effect 
of the reduction in solar constant. The strength of the 
amplification depends in part on the relative albedos of 
snow-free and snow-covered areas. The larger the difference 
in albedos, the greater the reduction in solar heating when 
the snow cover expands. If the albedos of snow-covered and 
snow-free areas were the same, there would be no albedo 
feedback. The albedo feedback has recently been discussed 
in a number of papers, most of which conclude that the effect 
is significant, but not as large as in the Budyko or Sellers 
models. For a review of energy balance models and a 
discussion of albedo feedback, see North et al. [1981]. 

Models have also been developed to study the relation 
between ice sheets and climate, beginning with the studies of 
ice sheet dynamics by Weertrnan [1961, 1962, 1976]. Other 
climate models that include the cryosphere have been pro- 
posed [Kiillen et al., 1979; Sergin, 1979], including a diffu- 
sive energy balance model with a highly simplified continen- 
tal ice sheet [Pollard et al., 1980] and a diffusive model with 
a power flow law ice sheet model [Birchfield et al., 1982]. 
These models are improving understanding of the causes of 
the Quaternary ice ages. For this reason it is important to 
understand the effect of ice sheets on the model response 
before attempting to simulate the historical record of the ice 
ages. 

The purpose of this paper is to discuss the sensitivity of an 
annual mean diffusive energy balance model which includes 
a large ice sheet. In the model proposed here, the presence 
of the ice sheet affects only the infrared cooling parameter- 
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ization. The height of the ice surface lowers the effective 
radiating temperature of an atmospheric column. The result- 
ing decrease in the radiative cooling to some extent counter- 
acts the albedo feedback and reduces the sensitivity of the 
ice cover to changes in solar constant. 

2. ENERGY BALANCE MODEL 

The energy balance equation for annual mean insolation 
forcing can be written 

D d dT(O) 
--cos 0• = -Qs(O)a[T(O)] + E[T(O)] (1) 

cos 0 dO dO 

This model is the same as that of North [ 1975]. The physical 
processes incorporated in the model are shown schematical- 
ly in Figure 1. The dependent variable T is the zonal mean 
sea level temperature, which is a function of latitude 0. 

The left-hand side of (1) is the convergence of the meridio- 
nal heat flux. The heat flux is parameterized as the product 
of a constant thermal diffusivity D and the meridional 
temperature gradient dT/dO. This diffusive approach has 
been used in many energy balance models. The diffusive 
parameterization is used here for simplicity and for compari- 
son with earlier models. 

The boundary conditions on (1) are that the flux vanish at 
the equator and at the pole 

dT 

cos0-- =0 at 0=0, • (2) dO 

The first term on the right-hand side in (1) is the solar 
heating. Q is the solar constant; the standard value Q0 is 
taken here to be 1376 W m -2. The latitudinal distribution of 
annual mean insolation is s(O). This function is plotted in 
Figure 1 in Held and Suarez [ 1974]. The fraction of the solar 
radiation absorbed at a given latitude depends on the tem- 
perature. For a model with snow cover only, the step 
function form for the absorptivity suggested by Budyko 
[1969] is used: 

a• = 1 - snow-free albedo T > To (3) a[T(O)] = a2 = al - = 1 - snow albedo T-< To 

The parameterization of the absorptivity for a model with an 
ice sheet will be discussed in section 3. The surface is snow 

covered poleward of the latitude 00 where the temperature is 
To. The difference in absorptivity between snow-covered 
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Fig. 1. Schematic of the physical processes included in the model. 

The details of the various processes are described in the text. 

and snow-free surfaces is a'. The snow-free and the snow- 
covered albedos are set to 0.29 and 0.59, respectively, 
yielding a• = 0.71, a2 = 0.41, and a' = 0.3. These values are 
similar to those used in many energy balance models [cf. 
Oerlemans and van den Dool, 1978] and are used here 
mainly for comparison. 

The last term in (1) is the radiative cooling E. A linear 
function of the form E = a + b T has been used in many 
energy balance models [North et al., 1981]. This general 
form has also been used in this study, with the inclusion of 
height dependence in the coefficients a and b. If this linear 
form is used for the radiative cooling, along with the 
absorptivity parameterization (3), (1)can be solved analyti- 
cally for the temperature as a function of latitude. Solutions 
to (1), along with linear stability conditions, were found for 
diffusive models by Held and Suarez [1974], North [1975], 
and Cahalan and North [1979]. 

In this paper the sensitivity of the model will refer to the 
response of the snowline to changes in the solar constant, 
defined as oOdoQ. The sensitivity depends on the value of 
D/b and the difference in the absorptivity between snow- 
covered and snow-free surfaces. Smaller values of b result in 

a more sensitive model. The coefficients of the radiative 

cooling parameterization are therefore important in deter- 
mining the overall sensitivity of the model. 

To establish the infrared cooling parameterization, it is 
necessary to know the outgoing infrared irradiance at the top 
of the atmosphere, E. There are two methods for determin- 
ing E. The first is to measure E in situ by using satellite- 
borne radiometers. The second is to calculate E directly by 
using a radiative transfer model. In either case, E is re- 
gressed against surface temperature to find the coefficients a 
and b. Different approaches to using the satellite data can be 
found in Held and Suarez [1974], Cess [1976], and Oerle- 
rnans and van den Dool [1978]. This type of parameteriza- 
tion has been used in most one-level energy balance models. 
If ice sheets are included in energy balance models, howev- 
er, the height of the ice sheet, which may be several 
kilometers, may have a significant effect on the radiative 
cooling. It is difficult, however, to determine the explicit 
dependence of the radiative cooling on the surface elevation 
from the satellite data alone. Oerlemans and van den Dool 

found that using surface temperature was a better way to 
predict E than using sea-level temperature, but the number 
of points at high elevations was small. Using a radiative 
transfer model allows one to vary temperatures and surface 
elevation independently. The calculations described below 
were done with the radiative transfer model of Stone and 

Manabe [1968]. 
Two different approaches to calculating the radiative 

cooling coefficients with the radiative transfer model may be 
used. The first could be called the 'climatological' approach; 
Budyko [1969] used this approach when he took monthly 

mean temperature, humidity and cloudiness profiles from 
many different stations and calculated the radiative cooling 
by the atmosphere at each station. From these calculations 
he found that E was best fit when a = 201.6 W m -2 and b = 
1.45 W m -2 øC-•, assuming no variation in cloudiness. This 
value of b is quite low and leads to the sensitivity mentioned 
in section 1. 

Similar calculations were done with the radiative transfer 

model for three climatological atmospheric temperature pro- 
files: the annual mean, zonal mean temperatures at 45 ø , 60 ø , 
and 75øN, taken from Oort and Rasmusson [1971]. Cloudi- 
ness and relative humidity were the same for each profile, 
while the annual mean, zonal mean ozone concentration was 
taken from Fels et al. [1980] for each profile. The three 
temperature profiles are plotted in Figure 2. The outgoing IR 
irradiance E calculated for each profile is plotted as a 
function of surface temperature in Figure 3. The coefficients 
of the best-fit straight line to these points are a = 215.6 W 
m -2 and b = 1.46 W m -2 øC-•. The coefficients calculated 
from these profiles are very close to those found by Budyko, 
especially b. Either of these radiative cooling parameteriza- 
tions would make for a very sensitive model. By contrast, 
the satellite measurements used by Oerlemans and van den 
Dool [1978] are also plotted in Figure 3 as a function of 
surface temperature. The coefficients they derived for the 
radiative cooling parameterization are a = 205 W m -2 and b 
= 2.23 W m -2 øC-•. This value of b is -50% larger than that 
calculated by using the observed temperature profiles in the 
radiative transfer model, and would lead to a much less 
sensitive energy balance model. The differences between the 
radiative transfer model results and the satellite observations 

are presumably the result of the assumption that cloudiness 
was constant in the model. 

The second approach to calculating the radiative cooling 
coefficients could be termed the 'perturbation' approach. In 

400-- 
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-- -- 0 
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Fig. 2. Temperature profiles used to calculate the outgoing IR 
irradiance at the top of the atmosphere. These are annual-mean, 
zonal-mean temperatures taken from Oort and Rasmusson [1971]; 
(a) at 45øN, (b) at 60øN, and (c) at 75øN. Dots indicate observations. 
Temperatures between observations were calculated by using cubic 
interpolation. 
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this approach, the climatological temperature profiles are 
perturbed slightly and the changes in the radiative cooling 
calculated with the radiative transfer model. The results 

depend on the choice of the vertical structure of the tempera- 
ture perturbation. Two different perturbations have been 
used in these calculations: a temperature change that de- 
creases linearly with pressure to zero at 200 mbar, and a 
temperature change constant with height. The general circu- 
lation model calculations of Wetheraid and Manabe [1975] 
suggest that the first of these is more appropriate in high 
latitudes (see Figure 3 in Wetheraid and Manabe). There- 
fore, the first perturbation has been used for the calculations 
described in the text. In middle latitudes the temperature 
change is more nearly constant with height, so results for the 
second form of the perturbation are included in the appen- 
dix. 

The perturbed temperature profiles are shown in Figure 4. 
As can be seen by comparing Figure 4 with Figure 2, the 
different profiles produced by using this form of perturbation 
resemble the different climatological profiles. By using the 
climatological profile from 45øN as a basis, E is calculated 
for each perturbed profile and plotted as a function of 
surface temperature in Figure 5. The resulting regression 
coefficients are a = 215.8 W m -2 and b = 1.52 W m -2 øC -1. 
These coefficients are very close to those computed by using 
Budyko's 'climatological' approach. Thus, this form of 
perturbation closely approximates the differences between 
climatological temperature profiles from different latitudes. 
The coefficients calculated by using the perturbed climato- 
logical profiles from 60 ø and 75øN are very close to those for 
the profile from 45øN. Therefore, the radiative cooling 
parameterization has no explicit dependence on latitude. 
The perturbation method has been used instead of the 
'climatological' method when examining the effects of sur- 
face elevation changes. 

Changes in the surface elevation are easily simulated in 
the radiative transfer model by changes in the surface 
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Fig. 3. Outgoing IR irradiance at the top of the atmosphere E as 
a function of surface temperature T,. Squares indicate values of E 
calculated for each of the temperature profiles in Figure 2. Line a is 
the least squares fit to those three points. Dots indicate satellite 
measurements of zonal mean outgoing IR irradiance at the top of the 
atmosphere for 10 ø latitudinal hands from Ellis and Vonder Haar 
[1976], and line b is the fit derived by Oerlernans and van den Dool 
[1978]. 
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Fig. 4. Climatological temperature profile from 45øN (heavy line) 
and perturbed profiles (light lines). 

pressure p,. Raising the surface (lowering the surface pres- 
sure) simply eliminates that part of the atmosphere below the 
new surface pressure. When changing the surface elevation, 
assumptions must be made about the response of cloud 
heights and amounts. Therefore, the clouds are handled in 
two alternative ways to try to gauge the importance of a 
particular assumption about clouds. In the first method, the 
cloud amount of the ith cloud is initialized at pressure Pi. 
When the surface pressure is changed, clouds remain at 
constant •r levels (O' i = Pi/P,). In this case, the clouds move 
to lower pressures as the surface is raised, and cloud 
amounts do not change. In the second method, clouds 
remain fixed at constant pressure levels. Cloud amounts are 
initialized when the surface elevation is zero. When the 

surface is raised, the surface pressure is decreased, and all 
clouds that are at higher pressures than the new surface 
pressure are removed. The surface gradually eclipses suc- 
ceeding cloud layers as the surface elevation increases. 

For each surface elevation, the temperature profile can be 
perturbed as described above and the coefficients a and b 
calculated. The relationship between E calculated from the 
model and the surface temperature T, is very linear in every 
case. The coefficients for different surface elevations and the 

.• 250- 

g 200- 

.•_ 

• 150 - 
._ 

lOO 

-41 I I 210 40 -20 0 

Surface Temperature T. (øC) 

Fig. 5. Outgoing IR irradiance E as a function of surface tem- 
perature T, calculated from the perturbed temperature profiles in 
Figure 4. 
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TABLE 1. Regression Coefficients for a Linear Fit to the 
Radiative Cooling E as a Function of Surface Temperature T, 

Surface Elevation 

h, km a, W m -2 b, W m -2 øC-• 
Clouds at Constant •r Levels 

0 215.8 1.52 
1 214.8 1.56 
2 213.6 1.59 
3 212.2 1.61 
4 210.6 1.60 
5 208.7 1.57 

Clouds at Constant Pressure Levels 
0 215.8 1.52 
1 218.1 1.64 
2 224.1 1.86 
3 226.7 1.95 
4 226.8 1.93 
5 228.1 1.94 

The climatological temperature profile is perturbed as shown in 
Figure 4. 

two different cloud treatments are listed in Table 1. Depend- 
ing on the method used, the coefficients may or may not 
depend on height. For the case with clouds at constant rr 
levels both a and b change little with elevation. In the other 
case, with clouds at constant pressure levels, a and b show 
larger changes as the surface elevation increases. For this 
case there is less cloud cover when the surface is higher and, 
as a result, the clouds absorb less of the upward radiation 
from the surface and radiate less from their tops. Therefore, 
the surface radiates more freely, and the total radiation is 
larger. The clouds also contribute a smaller fraction to the 
total upward radiation so the upward radiation is more 
dependent on the surface temperature, hence b is larger. The 
height dependence of the coefficients can be most simply 
represented by equations of the form a - ao + a•h and b - 
bo + b•h, where h is the surface elevation. For the first case 
with clouds at constant •r levels ao = 216.2 W m -2 a• = 
- 1.41 W m -2 km -•, bo = 1.55 W m -2 øC -l, and b• = 0.01 W 
m -2 øC-• km -•. For the case with clouds at constant 
pressure levels ao = 216.8 W m -2, a• = 2.58 W m -2 km -•, 
b0 = 1.59 W m -2 øC-l, and b• = 0.09 W m -2 øC-I km -•. 

A general form for the radiative cooling is 

E(T,, h) = (ao + a•h) + (bo + b•h)T, (4) 

The surface temperature T, can be calculated from the sea- 
level temperature T in the energy balance model by assuming 
a constant lapse rate F. Then T, = T - Fh and 

E(T, h) = (ao + a•h) + (bo + b•h)(r- Fh) (5) 

The net effect of the height can be seen by taking the partial 
derivative of E with respect to h 

OE 
= a• - b0F + b•T- 2b•Fh (6) 

Oh 

Using either of the two assumptions about clouds, the largest 
term is b0F. This term is present even if the radiative cooling 
coefficients do not depend on height (i.e., a• and b• = 0). The 
effect of this term is to decrease the radiation as the surface 
elevation increases because the surface becomes colder. The 

elevation of an ice sheet is important to the radiative cooling 
because the surface temperature should be used to calculate 
the radiative cooling, and the surface temperature is colder 

than the sea-level temperature. The other terms in (6) are the 
results of changes in the radiating properties of the atmo- 
sphere with height. These terms are small and generally 
cancel to some degree. 

As was pointed out by one of the reviewers, one can test 
the existence of the effect by examining the satellite radia- 
tion statistics over the Greenland and Antarctic ice sheets. 

The outgoing IR is mapped in Figure 1 of Hartmann and 
Short [ 1980]. In both cases, the outgoing IR decreases inland 
from the edge of the ice sheet as the ice thickness increases. 
Over Greenland the IR irradiance is --•20 to 40 W m -2 less 
than at lower elevations at the same latitude. An estimate of 

the decrease predicted by the model would be boFh • (1.55 
W m -2 øC-•) (6.5 øC km -•) (3 km) • 30 W m -2. The 
minimum in the outgoing IR over Antarctica can be seen in 
Figure 16 of Raschke et al. [ 1973] to lie over the center of the 
East Antarctic ice sheet, not over the pole, which is at a 
lower elevation (2800 m versus 4000 m). The satellite mea- 
surements seem to support the model calculations. 

3. ICE SHEET MODEL 

The ice sheet model used in the calculations is taken from 

Weertman [1976]. Assuming the ice sheet is centered on the 
pole, the assumption that ice flows as a perfectly plastic solid 
gives the height of the ice sheet as 

h(O, 00)= h(0- 00) v2 (7) 

The equatorward edge of the ice sheet is at latitude 00, where 
the absorptivity changes. A value of h = 1000 m (degree 
latitude) -m gives a central elevation of --•4500 m for an ice 
sheet extending to 70 ø latitude. 

The annual mean snow budget g can be written g(0) = P(0) 
- A(O), where P is the annual snowfall and A is the annual 
ablation. The latitude at which P equals A and g vanishes is 
called the snow line or equilibrium line, located at 0e. The 
parameterization described in section 2 to determine the 
amount of snow cover assumes that temperature is the most 
important variable affecting the snow budget. Therefore, the 
snow line is always assumed to lie at the latitude where the 
temperature is To. Budyko [1969] determined from observa- 
tions that To is - 10øC. It can be seen that for snow cover in 
the absence of an ice sheet 00 = 0e. 

The size of an equilibrium ice sheet, however, is deter- 
mined by the snow budget of the entire ice sheet, not just the 
snow budget at one point. This occurs because the flow of 
ice carries mass from regions of accumulation to regions of 
ablation. For an ice sheet to be in equilibrium, the snow 
budget integrated over the ice sheet must vanish. For a 
zonally averaged model this can be written 

IO re/2 g(O) COS 0 dO = 0 (8) 
0 

This implies that part of the ice sheet must lie in the 
accumulation zone and part must lie in the ablation zone, 
equatorward of the equilibrium line. Therefore, the ice sheet 
edge must be equatorward of the equilibrium line; that is, 00 
< 0e. All other factors being equal, an ice sheet in equilibri- 
um would be larger than a permanent snow field by an 
amount equal to the ablation zone of the ice sheet. 

Two simple methods for parameterizing the size of the ice 
sheet suggest themselves. One is to place the equilibrium 
point 0e at a given temperature; the other is to place the ice 
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margin 00 at a given temperature. The latter approach has 
been adopted for this model. There is no reason to expect 
that the value of To determined from snow cover observa- 
tions will be appropriate for an ice sheet. Affixing the ice 
sheet edge to an isotherm means that the ice sheet size is 
determined in exactly the same way as snow cover area. 
This is a useful and simple approximation, and will make the 
model with the ice sheet identical to that with snow cover, 
except for the radiative cooling parameterization. Therefore, 
the edge of the ice sheet lies at the -10øC mean annual 
isotherm. This has been done to isolate the influence of the 

infrared cooling parameterization on the sensitivity of the 
model. 

Oerlernans [ 1980] proposed a model in which the equilibri- 
um point 0e is affixed to an isotherm. Assuming a form for 
the mass balance of the ice sheet he finds the latitude of the 

ice sheet edge 00 is proportional to 4/3 0e. The factor of 4/3 
amplifies the albedo feedback, increasing the sensitivity of 
the model. This may explain why using the surface tempera- 
ture in his radiative cooling parameterization did little to 
change the sensitivity of his model. 

In the model described in this and the previous section the 
meridional flux of heat is computed from the meridional 
gradient of sea-level temperature. With the assumption of a 
constant lapse rate this is equivalent to computing the 
meridional heat transport from the gradient of the mid- 
tropospheric temperature. The mid-tropospheric tempera- 
ture gradient may be a more reasonable parameter to think of 
as controlling the heat transport through baroclinic instabil- 
ity processes. 

In the seasonal model of Pollard et al. [ 1980] the meridio- 
nal heat flux is proportional to the meridional gradient of the 
sea-level temperature, but the radiative cooling is also only a 
function of sea-level temperature, despite the inclusion of 
the ice sheet in the model. The neglect of the height effect 
and the choice of a value of b = 1.9 W m -2 øC-• probably 
lead to larger sensitivity than is warranted. As will be shown 
in the next two sections, the height effect makes the ice line 
significantly less sensitive to changes in the solar constant. 

4. ANALYSIS OF THE MODEL 

The effect of the height-dependent terms in (5) on the 
sensitivity of the energy balance model can be seen by 
considering the solar heating and radiative cooling terms 
from (1) together. To combine these two terms, the absorp- 
tivity a and the radiative cooling E are written in the 
following ways: 

a[T(0)]- a•- a'H(O, 0o) (9) 
and 

E(T, h) = ao q- [bo q- b•hH(O, 0o)]T 

- bo + b•h --•- FhH(O, 00) (10) 
where H(O, •0) is a step function at •o. The surface elevation 
h appears only in the radiative cooling (10), not in the albedo 
(9). Upon substituting (9) and (10) into (1) and combining 
terms containing H(O, •o), the energy balance equation 
becomes 

D d dT • • cos 0• = -Qs(O) 
cos 0 dO dO 

-(a'(bø+b•h-(a•/F))Fh) ] - Qs(O) , H(O, 0o) 
+ [a0 + (b0 + b•hH(O, 00))T] (11) 

This equation can be compared to (2) in North [ 1975]. In (11) 
the effect of h on the radiative cooling is now split into two 
parts. The first part has been combined with the albedo in 
the solar heating term. The second part is the height depen- 
dence of b in the radiative cooling term. The first part of the 
height effect reduces the outgoing radiation calculated in (10) 
as the surface elevation increases, because bo + b•h - a•/F 
is positive. In terms of the overall radiation budget of the 
energy balance model this is equivalent to increasing the 
solar heating of the ice sheet by reducing the difference in 
absorptivity a'. We can define the effective absorptivity 
difference ae' to be 

(bo + b•h - (a•/F))Fh 

Qs(O) 

For the case with clouds at constant pressure levels the 
following parameter values can be used to estimate a'e: I' = 
6.5øC km -•, h = 3 km, Q = Q0 and s --- 0.16 at 80 ø latitude; 
a•, b0 and b• were given in section 2. Using these values a' = 
.3, but a'e -- 0.17. For the case with clouds at constant tr 
levels a'e -- 0.14. In both cases the height of the ice sheet 
effectively increases the solar heating of the ice sheet by 
raising the absorptivity. 

The albedo feedback of the model with the ice sheet can 

now be physically understood in the following way. If the 
solar constant is reduced slightly, this causes a small cooling 
and an increase in the size of the ice sheet. The larger ice 
sheet absorbs less sunlight, but the higher (and colder) 
surface radiates less, partially counteracting the albedo 
feedback. The result is some further cooling, but not as 
much as for snow albedo feedback, where the height effect is 
absent. The second part of the height effect causes b to 
increase as the surface elevation increases because b• is 
positive. A larger value of b will also make the model less 
sensitive. The change in sensitivity of the model caused by 
including these effects will be shown in the next section by 
numerical solutions to the energy balance equation. 

The analytic solution to the energy balance equation with 
snow albedo feedback presented by North [1975] is valid if 
the absorptivity is a smooth function of latitude separately 
on and off the snow-covered area. If b• can be neglected, 
then all the height dependent terms can be included in the 
effective absorptivity difference. In that case the effective 
absorptivity of the ice sheet is a smooth function of latitude 
and the analytic results of North apply. 

5. EFFECTS OF THE ICE SHEET ON THE 

SENSITIVITY OF THE MODEL 

To illustrate the effect of the ice sheet on sensitivity, the 
latitude of the ice line 00 is computed as a function of solar 
constant for several cases both with and without the ice 

sheet. To solve the equation approximately, the diffusion 
operator, boundary conditions, and forcing are written in 
finite difference form. Using second-order centered differ- 
ences for the diffusion operator, (11) becomes the inhomo- 
geneous matrix equation 

DT = f(Q, 00,-'- ) (12) 
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Fig. 6. Equilibrium size of the snow field for two different snow 
albedos. Raising the snow absorptivity increases the planetary 
absorptivity and the global mean temperature. This makes the snow 
cover smaller and also reduces the albedo feedback and the sensitiv- 
ity of the model. 

where D is a tridiagonal matrix. Fixing Q, one must find the 
value of 00 such that T(0o) = To. In practice it is easier to fix 
00 and iterate to find the Q consistent with the ice line 
temperature. This method finds both stable and unstable 
equilibria. 

The following values were used for the parameters. The 
latitudinal distribution of annual mean insolation s was 

computed assuming a circular orbit and an obliquity of 23.5 ø. 
The function s is independent of the season of perihelion and 
only weakly dependent on the eccentricity. The standard 
absorptivities were given in section 2. The coefficients used 
to compute the radiative cooling were taken from the case 
with clouds at constant pressure levels. Using these parame- 
ters the diffusivity D was adjusted to 0.506 W m -2 øC-l to 
give a snow line temperature To = -10øC at 70 ø latitude 
when the solar constant was Q0. With the snow line at 70 ø 
latitude, the model produces realistic zonal mean tempera- 
tures. 

In Figure 6 the snowline (no ice sheet) is plotted as a 
function of solar constant for two different snow absorptivi- 
ties. In regions where OOo/OQ < 0 the snow line is unstable to 
small perturbations. In regions where OOo/OQ > 0, the snow 
line is stable and the sensitivity is proportional to the slope of 
the equilibrium line. It can be seen in Figure 6 that increasing 
the absorption by the snow cover (decreasing the albedo) 
stabilizes the snow line everywhere. From the curve with the 
'standard absorption' a2 = 0.41, the reduction in solar 
constant required to cause an ice covered Earth is --•3%. 
This is considerably more sensitive than many recent energy 
balance models that use larger values of b [cf. Oerlemans 
and van den Dool, 1978]. 

The height of the ice sheet has a significant effect on the 
sensitivity of the model. This can be clearly seen in Figure 7, 
which compares the equilibrium curves for the model with 
and without the ice sheet. The equilibrium curves are of 
questionable validity equatorward of 40 ø latitude because the 
ice sheet becomes unrealistically large and high. The stabi- 
lizing effect of the ice sheet can be seen to be very similar to 
the stabilization induced by increasing the absorptivity of the 
snow cover in Figure 6. This is in keeping with the analysis 
in section 4. The model has no stable solutions for ice sheets 

for the present value of the solar constant, and the solar 
constant would have to be reduced by --• 14% to produce an 
ice covered earth. 

The differences between the two curves could lead to 

interesting behavior of the ice sheet edge. An example is 
illustrated in Figure 7. If the solar constant is instantaneous- 
ly reduced from its present value Q0 by an amount AQ, the 
snow cover will advance from its present latitude (point 1) to 
near 50 ø latitude (point 2). As the snow accumulates, the 
increase in the surface elevation affects the radiative cooling. 
The ice sheet size must approach the equilibrium ice sheet 
size for the reduced value of the solar constant, so the ice 
sheet shrinks in length as it thickens. The eventual equilibri- 
um icesheet edge lies at about 67 ø latitude (point 3). If the 
solar constant is then increased back to Q0 the ice sheet must 
vanish, because there are no stable equilibrium ice sheets for 
Q = Q0. In a time-dependent model with an ice sheet the 
albedo would vary on time scales determined by the growth 
rate of snow cover and the shrinkage rate of the ice sheet. 

The relative importance of the height dependence of the 
surface temperature and the height dependence of the radia- 
tion coefficients can be seen in the equilibrium curves 
plotted in Figure 8. Curve A is for snow cover, curve B is for 
an ice sheet with a• = 2.58 W m -2 km -• and bl = 0.09 W 
m -2 øC-• km -• and curve C is for an ice sheet with a• = 0 
and b• = 0. Terms in (11) that include a• tend to make the 
model more sensitive by increasing a'e. Terms that include 
b• tend to make the model less sensitive both by decreasing 
a'e and by increasing b. With a• and b• = 0 the model is 
slightly more sensitive than with a• and b• 9 0. Equation (6) 
allows one to estimate the relative importance of terms 
involving a• and b•. For temperatures and heights relevant to 
an ice sheet the terms involving b• are larger than the term 
involving a•, except for small ice caps. Thus the model is 
slightly less sensitive when the height dependence of the 
radiative cooling coefficients is included. The ice sheet 
model is still considerably less sensitive than the snow 
model, even when a• and b• = 0. This implies that most of 
the reduction in the sensitivity is due to the use of surface 
temperature and is present even if the radiative cooling 
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Fig. 7. Equilibrium ice sheet size and equilibrium snow cover 
size. At any given solar constant the ice sheet is smaller than the 
snow cover and less sensitive to changes in the solar constant. This 
is similar to the differences seen in Figure 6. The numbers indicate 
the possible evolution of the ice sheet size following a sudden 
decrease in the solar constant. 
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coefficients do not depend on height. The relative magnitude 
and even the sign of a• and b• can change depending on the 
assumptions made about clouds, as illustrated in section 2. 
In either case the effect of the surface temperature domi- 
nates, and the model with the ice sheet is less sensitive than 
that with snow cover. 

6. CONCLUSIONS 

The interactions between climate and large ice sheets are 
not well understood. Diffusive energy balance models are a 
good tool for exploring the processes and feedbacks operat- 
ing in the climate system. In the model proposed here, one 
new feedback from the ice sheet to the atmosphere is 
included: the effect of the height of the ice sheet on radiative 
cooling by the atmosphere. Another significant factor may 
be the mass budget of the ice sheet. Important feedbacks 
may exist between the size of the ice sheet, the atmospheric 
circulation, and the precipitation and ablation at the ice sheet 
surface. These processes have not been considered here. 
Instead, the ice sheet is assumed to behave exactly like snow 
cover. If temperature is the most important factor control- 
ling the size of the ice sheet, the parameterization used here 
should be useful. A more realistic parameterization of the ice 
sheet size will require consideration of the mass budget of 
the ice sheet. Including a mass budget for the ice sheet will 
require a climate model that has a snow budget. 

The effect of the height of the ice sheet on the radiative 
cooling by the atmosphere has been calculated by using a 
radiative transfer model. This approach allows greater flexi- 
bility than by using satellite observations of the upward IR 
flux, but significantly different results are obtained depend- 
ing upon the assumptions made about cloud distributions 
and lapse rate. The height effects can be put into a diffusive 
energy balance model using a simple linear parameterization 
for the radiative cooling as a function of temperature with 
height dependent coefficients. 

The sensitivity of the snow line in an energy balance 
model has been described before [Held and Suarez, 1974; 
and North, 197:5]. The sensitivity depends in part on the 
relative absorptivities of the snow-covered and snow-free 
areas. One effect of the height of the ice sheet on the 
radiative cooling can be shown to be equivalent to increasing 
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Fig. 9. Climatological temperature from 45øN (heavy line) and 
perturbed profiles (light lines). 

the absorptivity of the snow-covered area (the ice sheet). 
This will reduce the effective difference in absorptivity 
between the snow-covered and snow-free areas. Reducing 
the absorptivity difference or including the height effect will 
reduce the sensitivity of the snow line to changes in the solar 
constant. The other effect of the height is to increase the 
value of b, the radiative cooling parameter. This will also 
lead to a more stable model. The height effect can reduce the 
sensitivity by a factor of 2 or more and should not be 
neglected when studying the sensitivity of climates with 
large ice sheets. 

APPENDIX 

The form of the temperature perturbation may have a large 
effect on the relationship between outgoing IR irradiance at 
the top of the atmosphere and the surface temperature. As 
an example, if the temperature perturbation is constant with 
height, the perturbed temperature profiles will be those 
shown in Figure 9. Calculations were done by using this 
perturbation for both cloud parameterizations discussed in 
section 2. The resulting regression coefficients are listed in 
Table 2. Using this perturbation, cloud top temperatures will 
increase the same amount as the surface temperature. The 
radiation emitted by clouds will therefore increase more for a 
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Fig. 8. Equilibrium ice sheet size and equilibrium snow cover 
size. Curve A is for snow cover. Curve B is for an ice sheet with a• 
= 2.58 W m -2 km -• and b• = 0.09 W m -2 øC -• km -•, and curve C is 
for an ice sheet with a• and b• = 0. 

TABLE 2. Regression Coet•cients for a Linear Fit to the 
Radiative Cooling E as a Function of Surface Temperature T, 

Surface Elevation 

h, km a, W m -2 b, W m -2 øC-• 

Clouds at Constant •r Levels 
0 208.2 2.63 
1 212.0 2.65 
2 215.9 2.66 
3 220.1 2.65 
4 224.7 2.63 

5 230.5 2.71 

Clouds at Constant Pressure Levels 
0 208.2 2.63 
1 215.5 2.66 
2 226.0 2.67 

3 232.6 2.69 
4 237.5 2.66 
5 244.1 2.75 

The climatological temperature profile is perturbed as shown in 
Figure 9. 
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given change in the surface temperature than when using the 
perturbation shown in Figure 4. The coefficient b is therefore 
larger in every case than those listed in Table 1. In both 
cloud treatments a increases with height because cloud tops 
are considerably warmer for the same surface temperature. 
For the case with clouds at constant pressure levels b does 
not change as much as with the other perturbation because 
the total radiation does not depend as much on changes in 
the surface temperature: temperatures are getting warmer or 
colder everywhere. 

These values of b are even larger than those calculated 
from satellite observations. A coefficient of this magnitude 
would tend to make the energy balance model much less 
sensitive than in the case discussed in section 2. 
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